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Abstract

The TOMOPT software is a tool to optimize the geometrical layout and specifications of detectors designed
for muon scattering tomography. Based on differentiable programming techniques, TOMOPT consists in
a modular pipeline that models all the aspects of a muon tomography task, from the generation and in-
teraction of cosmic ray muons with a parameterized detector and passive material, to the inference of the
volume properties. This enables the optimization of the detector parameters via gradient descent, to sug-
gest optimal detector configurations and specifications. This optimization is subjected to various external
constraints such as cost, logistics, and material identification efficiency.
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1. INTRODUCTION
Muon scattering tomography (MST) is an imaging technique that uses the natural flux of muons produced by cosmic rays inter-
acting with the upper atmosphere, and the deflection of those muons in materials due to multiple Coulomb scattering [1]. Many
applications are being developed [2] in various fields, which include the identification of nuclear material in waste drums [3],
border control [4], nuclear warhead verification in the context of nonproliferation treaties [5], or monitoring and preventive main-
tenance of industrial facilities [6].

Whatever the use case, MST detector conception aims at reaching the best performance while respecting specific constraints,
whether in terms of budget, logistics (e.g., not any size or shape can be allowed on site), or data acquisition time. While standard
detector design approaches revolve around optimizing these proxy objectives rather than the final measurement, we propose the
use of differentiable programming tools to provide analytic gradients along which to shift design parameters to best improve
end-goal performance.

2. TOMOPT

The simulation and optimization procedures developed for this study are embedded in a Python-based software referred to as
TOMOPT, which is still in development at the time these lines are written and will be made public in the near future. TOMOPT’s
ambition is to provide a modular and fully-differentiable pipeline with tools and methods required for the optimization of a muon
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scattering tomography detector. The first section of this document will describe TOMOPT’s structure and different modules. For an
extensive description of TOMOPT, the reader is invited to see [7].

The optimization is performed as an iterative gradient-descent algorithm [8], where each detector parameter x is updated at
each step (epoch) by computing the loss function gradient ∇xL(xk) reweighed by a learning rate η, as shown in equation (1) for
the step k + 1.

xk+1 = xk − η∇xL
(

xk
)

. (1)

The role of the loss function L(xk) is to mathematically express the idea of an optimal detector, in terms of both performance
and cost. Because gradient computation requires the loss function to be differentiable with respect to the detector parameters, the
whole inference chain is implemented in a differentiable way, utilizing the PYTORCH framework [9]. TOMOPT applies the same
workflow at each epoch, as presented in Figure 1:

(1) Initialization: The user provides an initial detector configuration to be optimized. This step is only performed once, prior to
the first epoch.

(2) Muon generation: Cosmic muons position, direction, and energy are sampled from models found in the literature, as explained
in Section 2.1.

(3) Muon propagation and detection: Muons are propagated through the volume of interest and their position is recorded by the
detection planes, referred to as panels, as described in Section 2.2.

(4) Volume inference: Muons tracks are reconstructed and used by the volume inference method. The latter being task-specific,
the user is free to implement its own inference method. TOMOPT provides an in-build method for X0 inference, further
described in Section 2.3.

(5) Loss function computation: Given the detector parameters xk, the loss function L(xk) is computed. Again, the choice of the loss
function is free and has to be adapted to the use-case.

(6) Gradient-descent: Given the loss function L(xk), detector parameter gradients ∇xL(xk) are computed.
(7) Detector parameter update: The updated detector parameters xk+1 are computed using equation (1).

FIGURE 1: Schematic view of TOMOPT workflow within a single epoch, reproduced from [10].

2.1. Passive Volume and Muon Transport
Muons are generated by sampling cosmic muon flux models, namely Guan et al. [11] or Shukla et al. [12]. TOMOPT then simulates
the passage of muons through the volume of interest (VOI) and their interaction with matter. The VOI is modeled as a 3D voxelized
volume, where each voxel bears the information of the material density and radiation length. An example of VOI is presented in
Figure 2. TOMOPT has its own database of radiation length for various materials but the user is also free to add custom radiation
lengths and densities. Being in its first phase of development, only multiple Coulomb scattering is taken into account during
muon propagation. It is done through the implementation of a step-by-step algorithm where muon displacement and deflection
are sampled from the scattering model recommended by the Particle Data Group (PDG) [13].

2.2. Detector Modeling and Hit Recording
Detectors are modeled as infinitely thin horizontal planes and are parameterized by a position x, y, z and spans dx, dy for a total of
5 learnable parameters per panel which will get updated at each epoch. Additionally, each panel has a spatial resolution σmax and
efficiency ϵmax which remain constant throughout the optimization. Muon’s positions (hits) are recorded in x, y, z and the effect
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FIGURE 2: Example of voxelized volume of interest (left). Example of detector panel modeling M with sigmoid function used
during optimization (blue) and realistic detector panel modeling (orange) (right).

of spatial resolution is simulated by applying a Gaussian smearing with mean µ = 0 and scaled by the spatial resolution σxy, as
shown in equation (2).

xyrec = xytrue + G
(
µ = 0, σ = σxy

)
, zrec = ztrue, (2)

where, in reality, a muon would be either detected or not, TOMOPT has to take a different approach in order to preserve the
differentiability of the inference chain with respect to the panel parameters. Hits are always recorded by the panels at their current
z position, even if the muon is located outside of the panel’s active area. However, the effective hit efficiency ϵhit and resolution σxy
will decrease the further away the hits get from the center of the panel. The model M used in TOMOPT is a pair double-sigmoid
function in x and y, as shown in Figure 2. This differentiability trick provides a detection performance close to the actual detector
for hits within the panel, and a smooth transition to zero efficiency and resolution outside the panel. In this way, each hit and
muon trajectory will be differentiable with respect to all parameters of the panel. As the inference accounts for the efficiencies of
the recorded hits, muons outside of the panels will still contribute but way less than a muon detected within the panel’s active area.

2.3. Volume Inference
Once muon hits have been recorded, they can be combined to reconstruct the incoming and outgoing muon tracks. They are
computed analytically through likelihood minimization and are reweighted as a function of the xy resolution of the hits σxy and
their efficiencies ϵhit. As a consequence, tracks from hits within the active detector region are likely to be properly reconstructed
whereas tracks from hits outside the active detector region will be poorly reconstructed and will bear a large uncertainty. Once
tracking is performed, various quantities such as zenith, azimuthal and scattering angles can be computed, which will then be
used by the inference method.

Volume inference is implemented in such a way that the user is free to choose his own inference method, as long as it respects
the differentiability of the loss function concerning detector parameters. The default volume inference method implemented in
TOMOPT, is based on the Point of Closest Approach [14] and accounts for POCA point uncertainty computed via automatic dif-
ferentiation. Once the POCA points are computed, they are used to compute an estimate of the radiation length X0 [m] of a voxel
with height δz, thus converting muon-wise data into voxel-wise data.

θrms
0 =

θrms
tot.√

2
, (3)

θrms
0 =

0.0136 GeV
prms

√
δz

X0 cos
(
θ̄rms

) , θ̄rms =
θrms

in + θrms
out

2
, (4)

X0 =

(
0.0136 GeV

prms

)2 δz
cos

(
θ̄rms

) 2
θrms

tot.
, (5)

where θrms
tot. is the root-mean-square (RMS) of the measured scattering angles. In equation (4), θrms

in and θrms
out , respectively, refer to

the incoming and outgoing muon zenith angles. Where in most POCA algorithms, a given POCA point only contributes to the
voxel it is located in, TOMOPT extends the POCA points to other voxels using the POCA point uncertainty. A POCA point with a
large uncertainty will be extended to other voxels, whereas a POCA with low uncertainty will only contribute to a single voxel.
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2.4. Demonstration
The following demonstration was made using 2 sets of 3 detection panels each. The initial configuration is purposely chosen to
be suboptimal: the panels’ span does not fully cover the volume of interest. Also, panels that are close to each other grant a poor
angular resolution, which drives the precision and quality of the inference. A single passive volume was used at each step, but
the user is free to optimize the detector using as many passive volumes as he wants. The passive volume used was a block of
sand containing a smaller block of lead. The initial efficiency and spatial resolution values are ϵmax = 0.9 and σmax = 1 mm.
The loss function used is the Mean Squared Error MSE = 1

N ∑N
i=1(X0,true − X0,pred)

2 computed over every voxel X0 prediction.
The optimization ran for 30 epochs and used 2000 muons per epoch, for a total computing time of 8 min on an 11th Gen Intel(R)
Core(TM) i5 CPU.

The initial detector configuration and optimized geometry are presented in Figure 3. Detector panels’ spans have been extended
such that they now cover the whole passive volume. Throughout optimization, the upper and lower panels’ z positions were,
respectively, forced to remain within [1.00, 0.80]m and [0.00, 0.20]m. After optimization, outer panels are placed as far as possible
from each other, which grants an almost optimal angular resolution. The most optimal configuration would be the one where
middle panels are placed as close as possible to the volume of interest. After further investigations, it appeared that the gain in
angular resolution provided by such configuration remains smaller than the loss gradient fluctuations from one epoch to another.

FIGURE 3: Initial detector configuration (left) and optimized detector configuration (right). Detector panels are represented as
colored lines and squares. The volume of interest horizontal profile is represented by the black hatched squares.

3. MUON MOMENTUM MEASUREMENT
The in-build X0 inference previously described in Section 2.3 assumes that the muon momentum p is known with a 100% precision
(equation (5)), which is quite unrealistic in the context of the MST experiment. The following section describes how a momentum
measurement module based on muon deflection measurement in a known material can be used for momentum inference [15, 16].
The performance of the machine learning based inference method, similar to [17], will be discussed and compared to the standard
regression approach.

3.1. Muon Momentum Measurement Module
The muon momentum measurement module in the study consists of an alternation of 10 detector panels and 10 cm thick scattering
material as illustrated in Figure 4. The latter is made of lead, a material chosen for its high scattering power (e.g., 4 GeV muons
traversing 10 cm of lead have a scattering angle and displacement distribution with respective standard deviation σ∆θ = 1.16◦ and
σ∆x = 0.08 cm). Detector panels are separated by a 10 cm gap from each other and record the true muon’s x and y position. The
effect of spatial resolution on the reconstructed hits is then simulated by applying a Gaussian smearing with the desired spatial
resolution σ.

3.2. Tracks Reconstruction
Once muon hits have been recorded, they are used to reconstruct muon tracks throughout the apparatus. Each two consecutive
position measurements constitute a track, which is then used to compute scattering and deflection angles. Additionally, a fit of all
reconstructed hits is performed. Variables relevant to the momentum inference are the following, as represented in Figure 4:

(i) Deflection angle θdeflection: the angle between 2 consecutive tracks. These values bear the measurement of muon displacement
dx: θdeflection = tan(dx/dr) where dr = d/ cos(θ) with θ being the muon zenith angle and d being the lead slab thickness.

(ii) Scattering angle ∆θ: the angle between muon trajectory before and after interacting with the lead block. The root mean square

θRMS
0 of the ∆θ distribution is computed as θRMS

0 =
√

1
N ∑N=4

i ∆θ2.

(iii) Fit residuals r: The residuals of the linear track fit performed over all recorded hits.
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FIGURE 4: Muon momentum measurement module (left). Variables used for momentum inference (right). From left to right, de-
flection angle θdeflection, scattering angle ∆θscattering, and linear fit residuals r. Green crosses and the grey rectangle, respectively,
represent the reconstructed hits and the lead slab.

FIGURE 5: Standard regression (up) and DNN regression (down) for a perfect detector spatial resolution. From left to right are
shown the predicted muon energy as a function of its true energy, the predicted and true muon energy distributions and the
predicted energy confusion matrix.

3.3. Inference
3.3.1. Standard Regression
The scattering angle variable ∆θ can be used to infer the muon momentum, using equation (6). Having 4 passive layers allows us
to measure 4 values of ∆θ, which are used to compute θRMS

0 . When detector panels have a perfect spatial resolution, this inference
method performs reasonably well and almost recovers the cosmic muon momentum distribution, as shown in Figure 5. When a
detector spatial resolution res = 1 mm is simulated, reconstructed hits become xrec = xtrue + G(µ = 0, σ = res). This resolution
is propagated to the angles used in the inference, which implicitly creates an upper limit in the momentum prediction. While in
the ideal case a high-energy muon creates an almost linear track with scattering angles close to zero, in a realistic setup, the angle
measurement is affected by the angular resolution which creates the illusion of a lower energy muon scatterings. This effect is
clearly visible in Figure 6, where it is impossible to predict muon momentum beyond 10 GeV. This naive approach is compared to
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a machine-learning-based regression method in the following section.

p =
13.6 MeV

θRMS
0

√
d

X0 cos(θ)
. (6)

FIGURE 6: Standard regression (up) and DNN regression (down) for a 1 mm detector spatial resolution. From left to right are shown
the predicted muon energy as a function of its true energy, the predicted and true muon energy distributions and the predicted
energy confusion matrix.

3.3.2. NN-Based Classification
As opposed to the standard regression approach described above, Deep Neural Networks (DNNs) offer more flexibility and allow
us to use multiple inputs: 9 deflection angles θdeflection, 4 scattering angles ∆θ, 10 fit residuals r, and the squared sum of the fit
residuals rsum = ∑10

i=1 r2
i . The DNN used in this analysis is made of three 64 neuron layers connected by ReLU activation functions

and utilizes the Adam optimizer [18]. The training was performed over 600 k events, and validation with 75 k events. Because of
the wide range of momenta, the regression is done on log(E). Figures 5 and 6 clearly demonstrate that there is more information
to extract from the hits than the scattering angles alone, something that the DNN is able to leverage.

4. CONCLUSION
We demonstrated the capabilities of TOMOPT in a generic use case of muon scattering tomography. Using a loss function evaluating
the performance of the radiation length predictions, we were able to optimize the initial poorly designed detector configuration
into one that shows almost optimal performance in terms of angular resolution. In this example, no additional constraints were
included in the loss function; however, alternative optimization could be performed to minimize the detector cost. Additionally, as
a simplified simulator of muon physics, the TOMOPT framework can be exploited for developing and testing advanced inference
algorithms.

We also showed how a muon momentum measurement module can be used to perform momentum classification. In this
context, it was shown that the use of Deep Neural Networks can out-perform standard regression approaches, by extracting more
relevant information from the detector hits than the scattering angles alone.
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