The Use of Muon Tomography in Safeguarding Nuclear Geological Disposal Facilities
Abstract
Muon attenuation tomography is a powerful tool that employs naturally occurring cosmic ray muons for locating, identifying, and measuring density irregularities in geological overburdens. First applied in the 1950s [3], the technique has very many diverse applications including imaging civil infrastructure such as railway tunnels [4], identifying ore bodies in mines, monitoring magma chambers in volcanoes [5], and identifying voids in pyramids [6, 7]. Muon scattering tomography, which requires the muons to be tracked both entering and leaving the object of interest, can provide valuable information on the atomic number, Z, of objects being imaging in addition to density information. The following reports on a series of simulation studies we have performed to assess the capability of muon radiography to detect a series of potential features that may need to be identified for safeguarding or safety purposes in geological disposal facilities (GDFs) for nuclear waste. Similarly, the application of muon scattering tomography to characterizing the materials encased in nuclear waste drums and to assessing unauthorized diversion scenarios is also presented.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Advanced Instrumentation in Science (JAIS) is an open access journal published by Andromeda Publishing and Education Services. The articles in JAIS are distributed according to the terms of the creative commons license CC-BY 4.0. Under the terms of this license, copyright is retained by the author while use, distribution and reproduction in any medium are permitted provided proper credit is given to original authors and sources.
Terms of Submission
By submitting an article for publication in JAIS, the submitting author asserts that:
1. The article presents original contributions by the author(s) which have not been published previously in a peer-reviewed medium and are not subject to copyright protection.
2. The co-authors of the article, if any, as well as any institution whose approval is required, agree to the publication of the article in JAIS.